Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Qian-Jin Li, Chun-Long Yang* and Xue-Qun Xie

College of Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China

Correspondence e-mail:
chunlongyang@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
R factor $=0.076$
$w R$ factor $=0.161$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

3,3'-Bis(2,4-dichlorophenoxyacetyl)-1,1'-(2,2'-dimethylbiphenyl-4,4'-diyl)dithiourea N, N-dimethylformamide disolvate

In the title compound, $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the molecule of $3,3^{\prime}$-bis(2,4-dichlorophenoxyacetyl)-1,1'-(2,2'-di-methylbiphenyl-4,4'-diyl)dithiourea (BT) possesses a crystallographically imposed centre of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds contribute to the essential planarity of the BT skeleton, with a maximum deviation from the mean plane of 0.196 (2) \AA for the S atoms.

Comment

The title compound, (I), belongs to the family of aroylthiourea compounds, which exhibit various biological properties such as antiviral, herbicidal, pesticidal, and plant-growth regulating activities (Xu et al., 2003; Sun et al., 2006; Du \& Ye, 2002). We present here its crystal structure.

Received 9 August 2006
Accepted 18 August 2006

(I)

The triclinic unit cell of (I) contains one molecule of 3, 3^{\prime} -bis(2,4-dichlorophenoxyacetyl)-1,1'-(2,2'-dimethylbiphenyl-$4,4^{\prime}$-diyl)dithiourea (BT) and two molecules of N, N dimethylformamide (DMF). All bond lengths and angles are normal (Allen et al., 1987). The BT molecule possesses a crystallographically imposed centre of symmetry at the midpoint of the central $\mathrm{C}-\mathrm{C}$ bond (Fig. 1).

Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 1) contribute to the essential planarity of the BT skeleton, with a maximum deviation from the mean plane of 0.196 (2) \AA for the S atoms.

Experimental

BT was prepared according to the method of Zhang \& Lin (1992). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a DMF solution at 293 K.

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	$V=1046.8(4) \AA^{3}$
$M_{r}=882.70$	$Z=1$
Triclinic, $P \overline{1}$	$D_{x}=1.400 \mathrm{Mg} \mathrm{m}^{-3}$
$a=10.012(2) \AA$	Mo $\mathrm{K} \alpha$ radiation
$b=10.488(2) \AA$	$\mu=0.44 \mathrm{~mm}^{-1}$
$c=11.124(2) \AA$	$T=293(2) \mathrm{K}$
$\alpha=67.78(3)^{\circ}$	Prism, yellow
$\beta=77.92(3)^{\circ}$	$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$
$\gamma=78.07(3)^{\circ}$	

$V=1046.8(4) \AA^{3}$
$Z=1$
400 Mg m
o $K \alpha$ radiation
$T=293$ (2) K
Prism, yellow
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
4104 independent reflections
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.881, T_{\text {max }}=0.958$
4104 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.161$
$S=1.00$
4104 reflections
300 parameters

1798 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections every 200 reflections intensity decay: none

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.047 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A \cdots O1	0.86	2.09	$2.558(5)$	114
N2-H2A O2	0.86	1.93	$2.669(5)$	143
C15-H15A \cdots S1	0.93	2.49	$3.182(5)$	131

All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}(\mathrm{C})$ of the parent atom. The DMF solvent molecule was treated as disordered over two positions, with refined occupancies of 0.552 (10) and 0.448 (10).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97

Figure 1
View of the BT molecular structure in (I) showing the atom-labelling scheme [symmetry code: (A) $-1-x, 1-y, 1-z$]. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines denote intramolecular hydrogen bonds. H atoms have been omitted.
(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We are grateful to H. Q. Wang for the X-ray data collection.

References

Allen, F. H., Kennard, O., Watosn, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Du, Z. X. \& Ye, W. F. (2002). J. Yanbei Normal Univ. (Nat. Sci.), 18, 7-11.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, C. W., Huang, H., Feng, M. Q., Shi, X. L., Zhang, X. D. \& Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162-166.
Xu, X. Y., Qian, X. H., Li, Z., Huang, Q. C. \& Chen, G. (2003). J. Fluorine Chem. 121, 51-54.
Zhang, Z. Y. \& Lin, H. X. (1992). Chem. J. Chin. Univ., 13, 936-937.

